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1 Curves and Intersections

(i) Two curves ‘touching’ at a given point means that they have the same height (y position) and same first
derivative. Hence,

mx = lnx; m =
1

x

We solve the two equations simultaneously, substituting the second into the first, giving

1

x
· x = lnx

1 = lnx

e = x

=⇒ m =
1

e

Note that x cannot be zero, since lnx is undefined at this point. Hence dividing by x is allowed. For the
second part, ‘intersecting’ means simply that they have the same height (y position) at a given point. So
we have

ma = ln a; mb = ln b

We are trying to show that ab = ba, so we need to somehow remove the m variable from the equations. A
simple way to remove a variable from two equations is to make that variable the subject of both equations.

m =
ln a

a
; m =

ln b

b

Now, we can set the equations equal to each other.

ln a

a
=

ln b

b
b ln a = a ln b

ab = ba
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The red line is the tangent that we calculated in the first part. The blue line intersects the curve at x = a
and x = b. We can see that if a < b, we must have a shallower gradient than e−1. We can then see that
the intersection points must lie either side of e.

(ii) Similarly to part (i), we have
mp+ c = ln p; mq + c = ln q

Hence,
ln p− c

p
= m =

ln q − c
q
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We can expand to get

ln p

p
− c

p
=

ln q

q
− c

q

ln p

p
+
c

q
=

ln q

q
+
c

p

But p < q hence 1
p >

1
q . So

ln p

p
>

ln q

q

q ln p > p ln q

pq > qp

(iii) We can just use part (ii) of the question. Both points are on the curve y = lnx.
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In order to touch both points which are to the right of e, the y-intercept must be positive. Now, let p = e
and q = π, since e < π. Then the y-intercept is positive, and part (ii) of the question applies. We can
deduce that eπ > πe.

(iv) You should recognise the ln q−ln p
q−p term as the gradient of the line joining two points.

y = lnx =⇒ ln q − ln p

q − p
=

∆y

∆x

So the gradient of the line joining (p, ln p) and (q, ln q) is given by this fraction ∆y
∆x , which we have been

told is e−1. Recall that in part (i) of this question, we proved that the line tangent to lnx passing through
the origin had gradient e−1. Hence, in order for a line of that gradient to intersect two points, it must
have been moved down.
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Therefore, the equation of this blue line is e−1x+ c where c is negative. We can use the same logic as in
part (ii), but this time solving for negative c.

ln p

p
− c

p
=

ln q

q
− c

q

ln p

p
+
c

q
=

ln q

q
+
c

p

We know that p > q hence 1
p <

1
q . So

ln p

p
<

ln q

q

q ln p < p ln q

pq < qp

as required.

2 Integration

(i) We can compare the two integrals to notice a few important similarities:

� they both range over the same limits;

� the powers on each term are the same, but swapped;

� 1− x and x both range over the interval [0, 1] in opposite directions.

From this, we might guess that in the first integral we need to substitute x for 1− u, which would mean
1− x is replaced with u. Using this substitution, dx = −du, and we can find∫ 1

0

xn−1(1− x)n dx = −
∫ 0

1

(1− u)n−1un du

=

∫ 1

0

(1− u)n−1un du

=

∫ 1

0

(1− x)n−1xn dx (∗)

Remember that the variable that we’re integrating over doesn’t appear in the final answer. So we are free
to rename that variable to whatever we like. For the next part, since we’re trying to work with twice the
left hand side of (∗), it seems like a logical step to instead add the left hand side of (∗) to the right hand
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side of (∗). This allows us to use what we’ve already deduced in the first part. This is a hallmark of STEP
questions: whenever you get the opportunity to use something you’ve already worked out, take it!

2

∫ 1

0

xn−1(1− x)n dx =

∫ 1

0

xn−1(1− x)n dx+

∫ 1

0

(1− x)n−1xn dx

Since the limits of integration are the same, we can combine the two integrals and factorise out the common
terms. ∫ 1

0

(
xn−1(1− x)n + (1− x)n−1xn

)
dx =

∫ 1

0

xn−1(1− x)n−1 ((1− x) + x) dx

=

∫ 1

0

xn−1(1− x)n−1 (1) dx

= In−1

Comparing our target to the equation at the top for In, we can see that one of the powers has increased
and the other has decreased. This reminds us of the technique of integration by parts, where one term is
differentiated and the other is integrated. Trying this technique, we get

In =

∫ 1

0

xn(1− x)n dx

=

[
−1

n+ 1
xn(1− x)n+1

]1

0

−
∫ 1

0

nxn−1 · −1

n+ 1
(1− x)n+1 dx

= 0 +

∫ 1

0

nxn−1 · 1

n+ 1
(1− x)n+1 dx

=
n

n+ 1

∫ 1

0

xn−1(1− x)n+1 dx

Now, to establish the final result, we notice that our result for In−1 contains an integral over xn−1(1−x)n,
and our result for In contains an integral over xn−1(1 − x)n+1. In order to combine these, we need to
therefore take away that extra factor from the In integral somehow. We can expand out this bracket to
create a sum of two integrals.

In =
n

n+ 1

∫ 1

0

xn−1(1− x)n+1 dx

=
n

n+ 1

∫ 1

0

(1− x)xn−1(1− x)n dx

=
n

n+ 1

∫ 1

0

xn−1(1− x)n dx− n

n+ 1

∫ 1

0

xn(1− x)n dx

=
n

n+ 1
· 1

2
In−1 −

n

n+ 1
· In

=⇒ In +
n

n+ 1
In =

n

2(n+ 1)
In−1

2n+ 1

n+ 1
In =

n

2(n+ 1)
In−1

In =
n(n+ 1)

2(n+ 1)(2n+ 1)
In−1

In =
n

2(2n+ 1)
In−1

(ii) We have now established a relationship that allows us to compute In given In−1. We are also told that n
is only a positive integer. These two ideas remind us of proof by induction. For proof by induction, we
must always consider a base case. Here, a simple base case could be n = 1. We can compute the integral
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in this case directly from the definition:

I1 =

∫ 1

0

x1(1− x)1 dx

=

∫ 1

0

(x− x2) dx

=

[
1

2
x2 − 1

3
x3

]1

0

=
1

2
− 1

3

=
1

6

=
(1!)2

(2 · 1 + 1)!

as required. Now, we can make an inductive step. Given that In = (n!)2

(2n+1)! , we want to show that

In+1 = ((n+1)!)2

(2(n+1)+1)! . We will use the result we proved in part (i) to help us move from the n case to the
n+ 1 case.

In+1 =
n+ 1

2(2(n+ 1) + 1)
In

=
n+ 1

2(2(n+ 1) + 1)

(n!)2

(2n+ 1)!

=
(n+ 1) · (n!)2

2(2n+ 3) · (2n+ 1)!

=
(n+ 1)! · n!

2(2n+ 3)!/(2n− 2)

=
(n+ 1)! · n!

(2n+ 3)!/(n− 1)

=
(n+ 1)! · n! · (n+ 1)

(2n+ 3)!

=
(n+ 1)! · (n+ 1)!

(2n+ 3)!

as required. Remember that we can extend or reduce factorials by a term, by multiplying or dividing by
that term, for instance n! = (n− 1)! · n = (n+ 1)!/n.

(iii) For this last part, we need to evaluate I 1
2

directly. We can’t use part (ii) because 1
2 isn’t a positive integer.

I 1
2

=

∫ 1

0

√
x(1− x) dx

With the substitution x = sin2 θ, we have dx = 2 sin θ cos θ dθ. The end points of the integral become
θ = 0 and θ = π

2 . Substituting into the integral, applying the double-angle formula for sine, we have

I 1
2

=

∫ π
2

0

√
sin2 θ(1− sin2 θ) · 2 sin θ cos θ dθ

=

∫ π
2

0

√
sin2 θ cos2 θ · sin 2θ dθ

=

∫ π
2

0

sin θ cos θ · sin 2θ dθ

=
1

2

∫ π
2

0

sin 2θ · sin 2θ dθ

=
1

2

∫ π
2

0

sin2 2θ dθ
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We can now apply the double-angle formula for cosine, to get

I 1
2

=
1

2

∫ π
2

0

1− cos 4θ

2
dθ

=
1

2

∫ π
2

0

1− cos 4θ

2
dθ

=
1

4

∫ π
2

0

(1− cos 4θ) dθ

=
1

4

[
(θ − 1

4
sin 4θ)

]π
2

0

=
1

4
· π

2

=
π

8

We can now use the result in part (i), since none of this reasoning required n to be an integer.

I 3
2

=
3/2

2(2(3/2) + 1)
· π

8

=
3

4(3 + 1)
· π

8

=
3

16
· π

8

=
3π

128

3 Cubic Equation

(i) The y-intercept is positive, and the cubic is positive.

−4 −2 0 2 4
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y

The red curve illustrates the three-root case. By moving the curve upwards, we get a one-root case,
depicted in blue. The white curve shows the case where the graph has no turning points, which always
gives a single root.

(ii) Since the cubic is positive, as x → −∞, f(x) → −∞. Since all three roots lie to the right hand side of
the origin, we must have c < 0 as the graph has not yet crossed the x-axis. Now, as we have seen in the
sketch, the graph must have two turning points in order to have three distinct roots. The turning points
can be found where the derivative of the function is zero.

3x2 + 6ax+ 3b = 0 =⇒ x2 + 2ax+ b = 0 (†)
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We need (†) to have two solutions, so that the cubic has two turning points. A quadratic has two solutions
if and only if its discriminant is greater than zero. Hence,

(2a)2 − 4 · 1 · b > 0 =⇒ a2 > b

Both turning points must be at x > 0. So the solutions to (†) must be at x > 0. If b ≤ 0, then one solution
would be negative and one would be positive, so b must be greater than zero. If a ≥ 0, then x2 + 2ax+ b
is always positive if x is positive, but since both our roots are for positive x, we must have a < 0.

(iii) This is a positive cubic. Since c > 0, the y-intercept is positive. Since ab < 0, we know that either a is
positive and b is negative, or a is negative and b is positive. Once again, let us consider the turning points
of this cubic. Once again, the turning points occur as solutions to (†), but this time the signs of a, b, c
may be different.

If b < 0, then (†) has both a positive and a negative solution for x (this can be seen by simply graphing
the function, since it is a positive quadratic). If a < 0 (and therefore b > 0), the solutions to (†), if any,
must be positive (again this can be seen by drawing a graph, or differentiating (†) and showing that the
turning point on this graph is positive). So in either case, the cubic has at least one turning point for
some positive x. So the graph looks something like this:
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Two roots are positive, and one root is negative.

(iv) For this last part, note that the conditions (∗) are independent of the value of c. Since c represents the
vertical translation of the graph, we can simply pick a graph that satisfies (∗), then translate it very high
so that the turning points are well above the x-axis. This would give a graph with only one root that
satisfies (∗). A simple equation that satisfies (∗) is

a = −2; b = 1; c = −1

The turning points of this function have a y position somewhere between −100 and 100 (not a very good
bound, but a bound nonetheless), so the graph

x3 − 6x2 + 3x− 101

certainly has only one real root, and satisfies all conditions in (∗).

4 Locus

The circle with unit radius has equation
x2 + y2 = 1

and the relevant line has equation
y = b(x− a)
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We can substitute the second equation into the first, giving

x2 + b2(x− a)2 = 1

This is a quadratic for x, where the two solutions give the x-coordinates of P and Q. Note, however, that the x
coordinate of the turning point of any quadratic is the mean of the two solutions. So we don’t actually need to
solve the quadratic, we only need its midpoint. So we can take the derivative of this quadratic, and solve that
instead.

2x+ 2b2(x− a) = 0 =⇒
(
1 + b2

)
x = ab2 =⇒ x =

ab2

1 + b2

M is on the line, hence the y coordinate is given by

y = b

(
ab2

1 + b2
− a
)

= b

(
ab2 − a− ab2

1 + b2

)
=
−ab

1 + b2

(i) We want to eliminate the independent variable a from the equation, so that we can get an expression that
is true regardless of the value of a. So let a be the subject of our equations for x and y.

a =
x(1 + b2)

b2
; a =

−y(1 + b2)

b

Combining the equations, we get

x(1 + b2)

b2
=
−y(1 + b2)

b
x

b2
=
−y
b

x = −by

This is an equation for a line that passes through the origin. Now, we need to work out the length of the
line. We can do this using Pythagoras’ Theorem. The height of the triangle is the difference in y from the
start point to the end point, and the width of the triangle is the difference in x. Since a ranges from −1
to 1, we have

∆x =
2b2

1 + b2
; ∆y =

2b

1 + b2

Hence, the length of the line ` is given by

`2 = ∆x2 + ∆y2

=

(
2b2

1 + b2

)2

+

(
2b

1 + b2

)2

=
4b4 + 4b2

(1 + b2)2

=
4b2(1 + b2)

(1 + b2)2

=
4b2

1 + b2

=⇒ ` =
2b√

1 + b2

Notice that ` < 2 for b > 0, since the denominator is always larger than b. Therefore, the line M sits
inside the circle (of diameter 2) and does not intersect it. The locus of M is shown in red in the following
diagram.
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Alternatively, we could use the substitution b = tan t for some −π2 < t < π
2 . This is motivated by the fact

that 1 + tan2 t = sec2 t, and since sec2 will be on the denominator, we end up with a simple cos2 factor on
the numerator. We then have

∆x =
2 tan2 t

sec2 t
= 2 tan2 t cos2 t = 2 sin2 t

∆y =
2 tan t

sec2 t
= 2 tan t cos2 t = 2 sin t cos t

Therefore,

`2 = ∆x2 + ∆y2

= 4 sin4 t+ 4 sin2 t cos2 t

= 4 sin2 t
(
sin2 t+ cos2 t

)
= 4 sin2 t

∴ ` = 2 sin t

Since −π2 < t < π
2 , −2 < 2 sin t < 2 so it sits inside the circle of diameter 2.

(ii) We need to solve these parts individually.

(a) Since b is the independent variable, let us make b the subject. In fact, it appears easiest to make b2

the subject in the equation for x.

x+ b2x = ab2 =⇒ (a− x)b2 = x =⇒ b2 =
x

a− x

We can substitute into the expression for y, noting that we need to consider both positive and negative
square roots of b2, to give

y =
±a
√

x
a−x

1 + x
a−x

= ±
a
√

x
a−x (a− x)

a− x+ x

= ±
a
√

x
a−x (a− x)

a

= ±
√

x

a− x
(a− x)

= ±
√
x(a− x)
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It is easiest to identify this equation by squaring both sides.

y2 = x(a− x)

x2 − ax+ y2 = 0(
x− 1

2
a

)2

+ y2 =
a2

4

This forms a circle, centred at
(
a
2 , 0
)

with radius a
2 . The following diagram shows the case a = 0.8.
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(b) We can substitute ab = 1 into our equations for x and y to give

x =
b

1 + b2
; y =

−1

1 + b2

Then b is the independent parameter, which varies with 0 < b ≤ 1. We can solve this like before,
by making b the subject. Here, it appears that manipulating the equation for y will be easier since b
appears only once.

y + b2y = −1 =⇒ b2 =
−1− y
y

We can substitute this intok the equation for x to give

x =

√
−1−y
y

1 + −1−y
y

=

√
y(−1− y)

y − 1− y
= −

√
−y(1 + y)

Squaring both sides and completing the square we can see

x2 = −y(1 + y)

x2 + y2 + y = 0

x2 +

(
y +

1

2

)2

=
1

4

This is the circle centred at
(
0,− 1

2

)
with radius 1

2 . Note, however, that b is restricted to the range
0 < b ≤ 1, so perhaps not the entire circle is covered by this locus. We can compute that the end
points have coordinates

b = 0 =⇒ (x, y) = (0,−1) ; b = 1 =⇒ (x, y) =

(
1

2
,
−1

2

)
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We can see that the locus actually traces out the bottom-right quarter-circle. We know that it traces
out this quarter circle (and not the other three quarters) because x is always positive for 0 < b ≤ 1,
which does not hold for the left half of the circle.
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5 Functions and Derivatives

(i) Since the equation f(x) = f(1− x) is true for all x, we can differentiate both sides.

f(x) = f(1− x)

f ′(x) = f ′(1− x) · −1

f ′(x) + f ′(1− x) = 0

We can substitute x = 1
2 to get

f ′
(

1

2

)
+ f ′

(
1

2

)
= 0 =⇒ f ′

(
1

2

)
= 0

Notice that the number 1
2 was special here because 1

2 = 1 − 1
2 . We can guess that the next part of the

question also relies on differentiating the identity, since the results have f ′ in them.

f(x) = f

(
1

x

)
f ′(x) = f ′

(
1

x

)
· −1

x2

f ′(x) +
1

x2
f ′
(

1

x

)
= 0

Substituting x = −1, we have

f ′(−1) +
1

(−1)2
f ′
(

1

−1

)
= 0 =⇒ f ′(−1) + f ′(−1) = 0 =⇒ f ′(−1) = 0

Note that −1 specifically worked here because −1 = 1
−1 . 2 isn’t a special number here, but we know how

to relate it to a previous result: we know already that f ′
(

1
2

)
= 0. So we can use the relationship we

deduced for reciprocals, and substitute in 2 (or 1
2 ).

f ′(2) +
1

22
f ′
(

1

2

)
= 0 =⇒ f ′(2) = −1

4
f ′
(

1

2

)
= 0

(ii) We can show both of these things directly, by substituting in 1
x and 1− x into f .

f

(
1

x

)
=

(x−2 − x−1 + 1)3

(x−2 − x−1)2
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We would like to remove all of the negative powers, so we multiply the top and bottom of the function
by the biggest negative power (after expanding), which is x6. We don’t need to worry about dividing by
zero, since f is defined only for x 6= 0.

f

(
1

x

)
=

(1− x+ x2)3

(x− x2)2

=
(x2 − x+ 1)3

(−(x2 − x))2

=
(x2 − x+ 1)3

(x2 − x)2

= f(x)

Notice that squaring a negative removes the negative sign, which is why we could rearrange the denomin-
ator. For 1− x, we have

f(1− x) =
((1− x)2 − (1− x) + 1)3

((1− x)2 − (1− x))2

=
(x2 − 2x+ 1− 1 + x+ 1)3

(x2 − 2x+ 1− 1 + x)2

=
(x2 − x+ 1)3

(x2 − x)2

= f(x)

Make sure you don’t forget (or add in) negative signs in lengthy algebraic manipulation. Now, we have
proved that f satisfies both conditions we met in part (i), so in particular it has turning points at x =
−1, 1

2 , 2. We are told that these are the only turning points, so all that we really need in order to sketch
the function is to see how it behaves as x tends towards critical points of the function and infinity.

Note that the function’s denominator vanishes to 0 from the positive direction as x → 0 and x → 1. In
both of these cases, we can see that the numerator is positive either side of the critical points. Therefore,
we are dividing a positive value by a very small positive value, giving a very large positive value as a result.
So near x = 0 and x = 1, the function tends to +∞.

As x tends to either positive or negative infinity, the x6 term on the numerator (when expanded) will
dominate the expression, showing that f(x) will tend to positive infinity in both cases.

We can evaluate the nature of each turning point heuristically. For example, the turning point at x = −1
must be a minimum point, since to the left (x→ −∞) the function tends to +∞, and to the right (x→ 0)
the function also tends to +∞. So the function is increasing on both sides of the point, so it is a minimum.
It turns out that the same holds for each point, and hence they are all minimum points.

Now, we can evaluate the function at each turning point. Each turning point has f(x) = 27
4 (the calcu-

lations are omitted here, since they are not complicated). Now, with this knowledge, we can sketch the
graph. The dashed lines are the asymptotes, and the red line is the line y = 27

4 , which will be useful for
the next part of the question.

−2 −1 0 1 2 3
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10

x

y
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(iii) By considering the graph we have just drawn, it is clear that the only solutions to f(x) = 27
4 are the

turning points: x = −1, 1
2 , 2. We can also see then that the ranges of x for which f(x) > 27

4 are exactly
the domain of f(x), minus the turning points. In other words,

{x < −1} ∪ {−1 < x < 0} ∪
{

0 < x <
1

2

}
∪
{

1

2
< x < 1

}
∪ {1 < x < 2} ∪ {2 < x}

Or more concisely,

x ∈ R \
{
−1, 0,

1

2
, 1, 2

}
This backward slash is read ‘(set) minus’ or ‘(set) difference’; X \Y means the set X but with the elements
in Y removed.

Now, to find the roots of f(x) = 343
36 , it is probably not a good idea to just start plugging in numbers;

we have a graph so we might as well use it. First, note that 343
36 > 27

4 . One way to see this by matching
the denominators of the fractions; by multiplying the numerator and denominator of 27

4 by 9, we get 243
36 ,

which is clearly less than 343
36 . So, we can picture f(x) = 343

36 as a line higher the red line above. It is
drawn on here in blue:

−2 −1 0 1 2 3
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We can see from the graph that this equation must have six solutions. Now, note that the number 343
36

has been chosen specifically for this problem, so it probably has some significance. Indeed, the numerator
is a cube number (343 = 73) and the denominator is a square (36 = 62). The function f(x) is also of
this form, with a cube on the numerator and a square on the denominator. So we don’t need to plug in
random numbers in the hope of getting this obscure fraction, we can instead work out how to produce the
correct value on the numerator and the denominator.

73

62
=

(x2 − x+ 1)3

(x2 − x)2
=⇒

7 = x2 − x+ 1

6 = x2 − x

There is no guarantee that all of the solutions will neatly produce exactly 343 on the numerator and 36
on the denominator (most likely, there will be a lot of extra terms and cancellations), but this is a good
place to start to get a solution. If we can find a value of x that satisfies both equations, it is a solution to
f(x) = 343

36 . We can see that both equations are solved by x = −2, 3. So f(−2) = f(3) = 343
36 .

This is a good start, but we still need to find another four roots. We can use the properties that we proved
in part (ii). If f(x) = 343

36 , then f(1 − x) = f
(

1
x

)
= 343

36 . So x = −1
2 ,

1
3 are also solutions. Note that

−2 = 1 − 3 and 3 = 1 − (−2), so we can’t get any extra roots by using that property here. But we can
try using the (1 − x) property on the two new roots we found, giving x = 3

2 ,
2
3 as extra solutions. We

have now found all six solutions. Because we know there are only six solutions, if we apply any of the
known transformations (1 − x or 1

x ) to any of the six known roots, we will get back another root that
we’ve already found. In summary,

x = −2,
−1

2
,

1

3
,

2

3
,

3

2
, 3
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And hence the ranges of values of x where f(x) > 343
36 are just the ranges where the graph is above the

blue line, which are

{x < −2} ∪
{
−1

2
< x < 0

}
∪
{

0 < x <
1

3

}
∪
{

2

3
< x < 1

}
∪
{

1 < x <
3

2

}
∪ {3 < x}

6 Convergence of Sequences

If you’re interested, the theorem at the start of the question is called the ‘least upper bound’ axiom of the real
numbers, or sometimes the ‘fundamental’ axiom of the real numbers. This axiom is what gives the real numbers
their unique character compared to the rationals. It is taught in one of the first courses in Part IA, Numbers
and Sets.

(i) It might help to quickly calculate the first few terms of the sequence so we can use them later, and to
provide a bit of intuition in solving the problem:

u1 = 1; u2 = 1 +
1

1
= 2; u3 = 1 +

1

2
=

3

2
; u4 = 1 +

2

3
=

5

3
; u5 = 1 +

3

5
=

8

5
; u6 = 1 +

5

8
=

13

8

You may recognise the numerators and denominators as increasing terms of the Fibonacci sequence,
although that isn’t required here in order to solve the problem. To show the result in part (i), we need to
start by getting an expression for un+2. We can do this by plugging (∗) into itself.

un+2 = 1 +
1

1 + 1
un

= 1 +
un

un + 1
=

2un + 1

un + 1
(†)

We also need some kind of expression relating un−2. Since n can be any number, we can substitute n− 2
into (†) to get a similar relationship for n and n− 2.

un =
2un−2 + 1

un−2 + 1
(‡)

Now, you should start to see similarities between the above two equations and the target we are trying to
prove. We can see that the left hand side of (†) minus the left hand side of (‡) gives the left hand side of
our target. You might also spot the denominators of the right hand sides, which could combine to give the
(1 + un)(1 + un−2) on the denominator of the right hand side of the target equation. So let us compute
(†)− (‡) and see what the right hand side becomes.

un−2 − un =
2un + 1

un + 1
− 2un−2 + 1

un−2 + 1

=
(2un + 1)(un−2 + 1)

(un + 1)(un−2 + 1)
− (2un−2 + 1)(un + 1)

(un−2 + 1)(un + 1)

=
(2un + 1)(un−2 + 1)− (2un−2 + 1)(un + 1)

(1 + un)(1 + un−2)

=
2unun−2 + un−2 + 2un + 1− 2unun−2 − un − 2un−2 − 1

(1 + un)(1 + un−2)

=
un − un−2

(1 + un)(1 + un−2)

as required.

(ii) Typically when STEP says ‘or otherwise’, it’s a bad idea to do it any other way. So let’s form a base
case, and then make an inductive step. We will start with n = 1 for simplicity, since u1 = 1 so clearly
the statement holds in this case. Inductively, we want to assume that 1 ≤ un ≤ 2 and then to prove that
1 ≤ un+1 ≤ 2. We know that un+1 = 1 + 1

un
. Since un is at most 2, then 1 + 1

un
is at least 1 + 1

2 = 3
2 .

Also, since un is at least 1, then 1 + 1
un

is at most 1 + 1
1 = 2. So 3

2 ≤ x ≤ 2, which is a stronger condition
than required. So by induction, 1 ≤ un ≤ 2 for all n.

(iii) In order to apply the ‘least upper bound’ axiom, we must first show that the sequence u1, u3, u5, . . . is
increasing and bounded above. Clearly, the sequence is bounded above; we showed in part (ii) that every
term in the sequence is bounded above by 2. To show that this sequence is increasing, we want to show
that un+2 ≥ un for all n. (In this case, n is odd, but the same logic works if n is even.) The sequence
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is characterised by the relationship we found in part (i), since we are only interested in every other term.
We can see now that the left hand side of the equation, un+2 − un, must always be greater than or equal
to zero in order for the sequence to be increasing.

We can prove that un+2 − un ≥ 0, and hence that the sequence is increasing, by induction. As a base
case, we can take n = 1, which gives u3 − u1 = 3

2 − 1 ≥ 0 as required. Now, we can make an inductive
step. Given that un − un−2 ≥ 0, we can deduce that

un+2 − un =
un − un−2

(1 + un)(1 + un−2)

The numerator of the right hand side is positive (by the inductive hypothesis) and the denominator is also
positive because un and un−2 are at least 1, by part (ii). Hence un+2 − un ≥ 0, and by induction this is
true for all odd n.

We have now shown that the sequence u1, u3, u5, . . . is increasing and bounded above. Therefore, by
the theorem above, this sequence converges to a limit. We can apply the same logic to the sequence
u2, u4, u6, . . . . We haven’t yet seen if it is increasing, however. We will start by considering n = 2, and we
get u4 − u2 = 5

3 − 2 ≤ 0. In fact, this sequence is decreasing; we can guess this by calculating u6 − u4 and
other similar expressions. We can prove this by induction, with the base case n = 2 as we have already
shown. Then, as before,

un+2 − un =
un − un−2

(1 + un)(1 + un−2)

The denominator is positive, as we have seen already, but this time the numerator is negative. Therefore
un+2 − un ≤ 0, and by induction the entire sequence is decreasing.

So, we have a decreasing sequence, but how can we show it tends to a limit? Note that the theorem at the
top of the question only talks about increasing sequences bounded above, but it follows that decreasing
sequences bounded below also tend to a limit. Indeed, if a1, a2, . . . is a decreasing sequence bounded
below, then −a1,−a2, . . . is an increasing sequence bounded above. Since u2, u4, u6, . . . is bounded below
by 1, using part (ii), it also converges to a limit.

Now, we can compute what these limits are. In the limit, in both the odd and even case, un+2 → un.
Therefore, in the limit, we can let un = un+2 = u and substitute into (∗) to get

u = 1 +
1

1 + 1
u

= 1 +
1

1+u
u

= 1 +
u

1 + u

=
1 + u+ u

1 + u

=
1 + 2u

1 + u

∴ u(1 + u) = 1 + 2u

u+ u2 = 1 + 2u

u2 − u− 1 = 0

The values of u which solve this equation are u = 1±
√

5
2 . However, only one of these is in the required

range, so the only solution is u = 1+
√

5
2 . So the sequence u1, u3, u5, . . . and the sequence u2, u4, u6, . . .

both tend to 1+
√

5
2 , which for convenience we will abbreviate to ϕ.

Since both the odd terms and the even terms of the main sequence u1, u2, u3, . . . tend to ϕ, the whole
sequence must also tend to ϕ.

Now, for the last part, if u1 = 3 then

u2 = 1 +
1

3
=

4

3

All successive terms will now lie between 1 and 2, as we have shown in part (ii), and so all of the above
arguments will hold. Even if u1 = 3, the sequence will still tend to ϕ.
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7 Integer Equations

(i) Recall that ‘non-negative’ means ‘zero or greater’. Zero is the easiest number to work with; we can see
that x = 1, y = 0 solves this equation. Now, let us substitute x = 3p + 4q and y = 2p + 3q into this
equation:

(3p+ 4q)2 − 2(2p+ 3q)2 = 9p2 + 24pq + 16q2 − 8p2 − 24pq − 18q2

= p2 − 2q2

But we are told that x = p and y = q solves (∗), so p2 − 2q2 = 1. Hence (3p+ 4q)2 − 2(2p+ 3q)2 = 1, and
so x = 3p+ 4q and y = 2p+ 3q solve (∗). We can now use this new relationship to generate more solutions
for (∗). Let p = 1 and q = 0, then x = 3 and y = 2 solves the equation. We can generate another solution;
let p = 3 and q = 2, we find that x = 17 and y = 12 also works.

(ii) If x is odd, then x = 2m+ 1 for some integer m. Likewise, y = 2n for some integer n. Then

(2m+ 1)2 − 2(2n)2 = 1

4m2 + 4m+ 1− 8n2 = 1

2n2 = m2 +m

n2 =
1

2
m(m+ 1)

as required.

(iii) Note that the right hand side can be written as a difference of two squares:

c4 − a2 = (c2 − a)(c2 + a)

Since b is prime, either

1. c2 − a = b3, c2 + a = 1

2. c2 − a = b2, c2 + a = b

3. c2 − a = b, c2 + a = b2

4. c2 − a = 1, c2 + a = b3

Note that case 1 is impossible; since c ≥ 1 and a ≥ 1, c2 + a ≥ 2. Similarly, case 2 is impossible since we
can make c2 the subject for both equations, giving b2 + a = b− a. Since b2 > b, we have a < −a which is
a contradiction. So the two valid cases are 3 and 4. In each case, we can solve simultaneously. In case 3,
we have

c2 − a = b

=⇒ a = c2 − b
∴ c2 + (c2 − b) = b2

2c2 = b2 + b

c2 =
b2 + b

2

∴ a =
b2 + b

2
− b

=
b2 + b− 2b

2

=
b2 − b

2
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In case 4, we have

c2 − a = 1

=⇒ a = c2 − 1

∴ c2 + (c2 − 1) = b3

2c2 = b3 + 1

c2 =
b3 + 1

2

∴ a =
b3 + 1

2
− 1

=
b3 + 1− 2

2

=
b3 − 1

2

Notice that in case 3, we have c2 = 1
2b(b+ 1). This reminds us of part (ii), where n = c and m = b. This

tells us that x = 2m+ 1 = 2b+ 1 and y = 2n = 2c is a solution to (∗).

(2b+ 1)2 − 2(2c)2 = 1

We can combine all of the parts to the question together, to see that solutions to (∗) can be converted into
solutions to a2 + b3 = c4. We can try our solutions for (∗) until we find one that works. (∗) is solved for
b = 1 and c = 1, but this doesn’t give a positive integer a such that a2 + 13 = 14. We can try the other
solution b = 8 and c = 6, giving a2 + 83 = 64. To solve for a, we can rearrange to get

a2 = 64 − 83

We can find that 83 = 512 and 64 = 1296. Then

a2 = 1296− 512

a2 = 784

a = 28

So (a, b, c) = (28, 6, 8) solves a2 + b3 = c4.

8 Inequalities with Integration

(i) The area of any rectangle is the width multiplied by the height. We can see what the width and height of
the rectangle is by sketching it along with any relevant lines defined by the question:

0 1 2 3 4 5
0

1

2

3

4

5

A

x

y
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The width of the blue rectangle is t, and hence its height is f(t). If the rectangle has width x, then the
height of the rectangle is the height of the curve at this point, f(x), minus the height of the curve at t,
f(t). So we can make an expression for A as a function of x and t:

A(x, t) = x(f(x)− f(t))

Now, we want the largest value of A, as x varies. To find the maximum point of a function as we change
a variable, we must differentiate it with respect to this variable, and set the derivative to zero to find the
turning point. So we need to find the derivative of A with respect to x (we keep t fixed), and set that to
zero.

dA

dx
= x(f ′(x)) + (f(x)− f(t))

The value of x that maximises A will be called x0. So we have

0 = x0(f ′(x0)) + f(x0)− f(t)

So x0 satisfies
x0(f ′(x0)) + f(x0) = f(t)

The value of A at x0, i.e. the maximum A for any given t, will be called A0(t). Note that this is not a
function of x, since A0 finds the value of x that yields the largest area, so we are not free to choose the
value of x ourselves.

A0(t) = A(x0, t) = x0(f(x0)− f(t))

(ii) We can calculate this first part directly. Recall that the fundamental theorem of calculus states that

d

dt

∫ t

f(x) dx = f(t)

Note that the lower limit of the integral doesn’t matter, and that the variable x used inside the integral
is not the same as the variable t used as the limit and outside the integral. We can use the product rule
to find that

g′(t) =
1

t
f(t)− 1

t2

∫ t

0

f(x)

tg′(t) = f(t)− 1

t

∫ t

0

f(x)

tg′(t) = f(t)− g(t)

For the next part of this question, we should consider the geometrical interpretation of the integral, since
we are asked to relate it to a sketch. The integral of f(x) − f(t) is the area between the lines y = f(x)
and y = f(t). So on the sketch above, the area below the white curve and the horizontal blue line is the
integral. The red rectangle A is clearly inside this area for any value of x, so A0 must be smaller than the
integral.

We can now compute the integral on the left hand side of this inequality. Note that f(t) is a constant
since we are integrating with respect to x.∫ t

0

(f(x)− f(t)) dx > A0(t)∫ t

0

f(x) dt−
∫ t

0

f(t) dx > A0(t)

tg(t)− tf(t) > A0(t)

−t[f(t)− g(t)] > A0(t)

−t[tg′(t)] > A0(t)

−t2g′(t) > A0(t)

(iii) This function is a strictly decreasing function with f(x) > 0 for all x ≥ 0, so we can use the properties
we have proven in (i) and (ii). It looks like we will need to apply the inequality in (ii). To apply the
inequality, we first need to know A0. In order to find A0, we need to know the value of x0, so we must
solve the relationship we found in part (i), which was x0f

′(x0) + f(x0) = f(t). First, we should calculate
f ′(x), which is

f ′(x) =
−1

(1 + x)2
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Then we can write

x0
−1

(1 + x0)2
+

1

1 + x0
=

1

1 + t

−x0

(1 + x0)2
+

1 + x0

(1 + x0)2
=

1

1 + t

−x0 + 1 + x0

(1 + x0)2
=

1

1 + t

1

(1 + x0)2
=

1

1 + t

(1 + x0)2 = 1 + t

1 + x0 =
√

1 + t

x0 =
√

1 + t− 1

We only need the positive square root, since x0 must be positive. Now, we can find A0(t):

A0(t) = x0(f(x0)− f(t))

=
(√

1 + t− 1
) (
f
(√

1 + t− 1
)
− f(t)

)
=
(√

1 + t− 1
)( 1

1 +
√

1 + t− 1
− 1

1 + t

)
=
(√

1 + t− 1
)( 1√

1 + t
− 1

1 + t

)
=
√

1 + t · 1√
1 + t

−
√

1 + t · 1

1 + t
− 1√

1 + t
+

1

1 + t

= 1− 1√
1 + t

− 1√
1 + t

+
1

1 + t

=
(1 + t)− 2

√
1 + t+ 1

1 + t

=
2 + t− 2

√
1 + t

1 + t

Now, we just need to find the left hand side of the equation in part (ii), −t2g′(t). So we need g′(t).

g′(t) =
d

dt

[
1

t

∫ t

0

1

1 + x
dx

]
=

d

dt

[
1

t
[ln(1 + x)]t0

]
=

d

dt

[
1

t
ln(1 + t)

]
=

1

t
· 1

1 + t
+
−1

t2
· ln(1 + t)

∴ −t2g′(t) = ln(1 + t)− t

1 + t
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Now we can substitute everything we know into the equation we found at the end of part (ii).

ln(1 + t)− t

1 + t
>

2 + t− 2
√

1 + t

1 + t

ln(1 + t) >
t

1 + t
+

2 + t− 2
√

1 + t

1 + t

ln(1 + t) >
2 + 2t− 2

√
1 + t

1 + t

1

2
ln(1 + t) >

1 + t−
√

1 + t

1 + t

ln(1 + t)
1
2 >

1 + t

1 + t
−
√

1 + t

1 + t

ln
√

1 + t > 1−
√

1 + t

1 + t

12 Poisson Distributions

(i) If U ∼ Po(λ), then we know

P (U = x) = e−λ · λ
x

x!

The expectation of a non-negative discrete random variable is defined as

E (X) =

∞∑
x=0

x · P (X = x)

Therefore, we can calculate the expectation of X as follows:

E (X) =

∞∑
x=0

x · P (X = x)

= 1 P (X = 1) + 2 P (X = 2) + 3 P (X = 3) + 4 P (X = 4) + · · ·
= 1 P (U = 1) + 3 P (U = 3) + 5 P (U = 5) + 7 P (U = 7) + · · ·

= 1e−λ · λ
1

1!
+ 3e−λ · λ

3

3!
+ 5e−λ · λ

5

5!
+ 7e−λ · λ

7

7!
+ · · ·

= e−λ
[

1 · λ1

1!
+

3 · λ3

3!
+

5 · λ5

5!
+

7 · λ7

7!
+ · · ·

]
= e−λ

[
λ1

0!
+
λ3

2!
+
λ5

4!
+
λ7

6!
+ · · ·

]
= λe−λ

[
λ0

0!
+
λ2

2!
+
λ4

4!
+
λ6

6!
+ · · ·

]
= αλe−λ
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Similarly, we can compute the expectation of Y .

E (Y ) =

∞∑
y=0

y · P (Y = y)

= 1 P (Y = 1) + 2 P (Y = 2) + 3 P (Y = 3) + 4 P (Y = 4) + · · ·
= 2 P (U = 2) + 4 P (U = 4) + 6 P (U = 6) + 8 P (U = 8) + · · ·

= 2e−λ · λ
2

2!
+ 4e−λ · λ

4

4!
+ 6e−λ · λ

6

6!
+ 8e−λ · λ

8

8!
+ · · ·

= e−λ
[

2 · λ2

2!
+

4 · λ4

4!
+

6 · λ6

6!
+

8 · λ8

8!
+ · · ·

]
= e−λ

[
λ2

1!
+
λ4

3!
+
λ6

5!
+
λ8

7!
+ · · ·

]
= λe−λ

[
λ1

1!
+
λ3

3!
+
λ5

5!
+
λ7

7!
+ · · ·

]
= βλe−λ

Note that X+Y = U , so we can check our answers by making sure that E (X) + E (Y ) = E (U). We know
that E (U) = λ since it has the Poisson distribution.

E (X) + E (Y ) = (α+ β)λe−λ

= λe−λ
∞∑
k=0

λk

k!

= λe−λeλ

= λ

as expected.

(ii) The formula for the variance of a random variable X is

Var (X) = E
(
X2
)
− E (X)

2

So we need to compute the expectation of X2. This involves a lot of manipulation of factorials. Whenever
there is a term on the numerator that we want to cancel with a factorial on the denominator, you should
consider that we might need to split up that term so that it cancels nicely. An example of this is seen on
the seventh line of the derivation below. This is:

E
(
X2
)

=
∞∑
x=0

x2 · P (X = x)

= 12 P (X = 1) + 22 P (X = 2) + 32 P (X = 3) + 42 P (X = 4) + · · ·
= 12 P (U = 1) + 32 P (U = 3) + 52 P (U = 5) + 72 P (U = 7) + · · ·

= 12e−λ · λ
1

1!
+ 32e−λ · λ

3

3!
+ 52e−λ · λ

5

5!
+ 72e−λ · λ

7

7!
+ · · ·

= e−λ
[

12 · λ1

1!
+

32 · λ3

3!
+

52 · λ5

5!
+

72 · λ7

7!
+ · · ·

]
= λe−λ

[
1 · λ0

0!
+

3 · λ2

2!
+

5 · λ4

4!
+

7 · λ6

6!
+ · · ·

]
= λe−λ

[
(0 + 1) · λ0

0!
+

(2 + 1) · λ2

2!
+

(4 + 1) · λ4

4!
+

(6 + 1) · λ6

6!
+ · · ·

]
= λe−λ

[{
0 · λ0

0!
+

2 · λ2

2!
+

4 · λ4

4!
+

6 · λ6

6!
+ · · ·

}
+

{
λ0

0!
+
λ2

2!
+
λ4

4!
+
λ6

6!
+ · · ·

}]
= λe−λ

[{
λ2

1!
+
λ4

3!
+
λ6

5!
+ · · ·

}
+

{
λ0

0!
+
λ2

2!
+
λ4

4!
+
λ6

6!
+ · · ·

}]
= λe−λ

[
λ

{
λ1

1!
+
λ3

3!
+
λ5

5!
+ · · ·

}
+

{
λ0

0!
+
λ2

2!
+
λ4

4!
+
λ6

6!
+ · · ·

}]
= λe−λ [λβ + α]
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Hence

Var (X) = λe−λ [λβ + α]−
(
αλe−λ

)2
=
λα+ λ2β

eλ
− λ2α2

(eλ)2

At this point, you might guess that eλ = α+β. This turns out to be true, by considering the Taylor series
of eλ.

eλ =

∞∑
k=0

λk

k!

=

(
λ0

0!
+
λ2

2!
+
λ4

4!
+
λ6

6!
+ · · ·

)
+

(
λ1

1!
+
λ3

3!
+
λ5

5!
+
λ7

7!
+ · · ·

)
= α+ β

This then gives

Var (X) =
λα+ λ2β

α+ β
− λ2α2

(α+ β)2

We can make a similar derivation for Var (Y ).

E
(
Y 2
)

=

∞∑
y=0

y2 · P (Y = y)

= 12 P (Y = 1) + 22 P (Y = 2) + 32 P (Y = 3) + 42 P (Y = 4) + · · ·
= 22 P (U = 2) + 42 P (U = 4) + 62 P (U = 6) + 82 P (U = 8) + · · ·

= 22e−λ · λ
2

2!
+ 42e−λ · λ

4

4!
+ 62e−λ · λ

6

6!
+ 82e−λ · λ

8

8!
+ · · ·

= e−λ
[

22 · λ2

2!
+

42 · λ4

4!
+

62 · λ6

6!
+

82 · λ8

8!
+ · · ·

]
= λe−λ

[
2 · λ1

1!
+

4 · λ3

3!
+

6 · λ5

5!
+

8 · λ7

7!
+ · · ·

]
= λe−λ

[
(1 + 1) · λ1

1!
+

(3 + 1) · λ3

3!
+

(5 + 1) · λ5

5!
+

(7 + 1) · λ7

7!
+ · · ·

]
= λe−λ

[{
1 · λ1

1!
+

3 · λ3

3!
+

5 · λ5

5!
+

7 · λ7

7!
+ · · ·

}
+

{
λ1

1!
+
λ3

3!
+
λ5

5!
+
λ7

7!
+ · · ·

}]
= λe−λ

[{
λ1

0!
+
λ3

2!
+
λ5

4!
+
λ7

6!
+ · · ·

}
+

{
λ1

1!
+
λ3

3!
+
λ5

5!
+
λ7

7!
+ · · ·

}]
= λe−λ

[
λ

{
λ0

0!
+
λ2

2!
+
λ4

4!
+
λ6

6!
+ · · ·

}
+

{
λ1

1!
+
λ3

3!
+
λ5

5!
+
λ7

7!
+ · · ·

}]
= λe−λ [λα+ β]

Hence

Var (Y ) = λe−λ [λα+ β]−
(
βλe−λ

)2
=
λ2α+ λβ

α+ β
− λ2β2

(α+ β)2

For the final part of the question, we need Var (X + Y ). But since X+Y = U , Var (X + Y ) = Var (U) = λ.
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So we need to solve

λ = Var (X) + Var (Y )

λ =
λα+ λ2β

α+ β
− λ2α2

(α+ β)2
+
λ2α+ λβ

α+ β
− λ2β2

(α+ β)2

1 =
α+ λβ

α+ β
− λα2

(α+ β)2
+
λα+ β

α+ β
− λ2β2

(α+ β)2

1 =
α+ λβ + λα+ β

α+ β
− λα2 + λβ2

(α+ β)2

1 = (1 + λ)
α+ β

α+ β
− λ α

2 + β2

(α+ β)2

1 = 1 + λ− λ α
2 + β2

(α+ β)2

λ = λ
α2 + β2

(α+ β)2

Since λ is non-zero,

1 =
α2 + β2

(α+ β)2

(α+ β)2 = α2 + β2

α2 + 2αβ + β2 = α2 + β2

2αβ = 0

which cannot happen for λ 6= 0. So there are no non-zero values of λ for which Var (X) + Var (Y ) =
Var (X + Y ).

13 Biased Coin

(i) If A = 1, then the longest alternating run had length 1, so the second coin flip must be the same result as
the first coin flip. So we either got two heads (with probability p2) or two tails (with probability q2). So
the total probability is just the sum, p2 + q2. If S = 1, then the longest straight run had length 1, so the
second flip must be a different result to the first flip, meaning we either got a head then a tail, or a tail
then a head. These events have probability pq and qp, giving a total of P (S = 1) = 2pq.

You might recognise p2 + q2 and 2pq as terms in the expansion of (p+ q)2 or (p− q)2; this is probably the
easiest way to do this part of the question if you see this relationship. In this question, it turns out that
we need to use (p− q)2. Note that (p− q)2 is always positive, since it is a square number. Then

(p− q)2 > 0

p2 − 2pq + q2 > 0

p2 + q2 > 2pq

P (A = 1) > P (S = 1)

as required. If we had used the inequality (p+ q)2 > 0 instead, we wouldn’t have been able to make this
deduction. The (p − q)2 expression worked because there were some negative terms that we could move
to the other side of the inequality.

(ii) For convenience, we will abbreviate the results of coin tosses with the initials H (heads) and T (tails), so a
run of two heads then a tail will be written HHT. If S = 2, we must have tossed HHT or TTH. The total
probability is

P (S = 2) = P (HHT) + P (TTH) = p2q + q2p = pq(p+ q)

If A = 2, then we either tossed HTT or THH.

P (A = 2) = P (HTT) + P (THH) = pq2 + qp2 = pq(p+ q) = P (S = 2)
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as required. For S = 3, we have

P (S = 3) = P (HHHT) + P (TTTH) = p3q + q3p = pq(p2 + q2)

For A = 3, we have

P (A = 3) = P (HTHH) + P (THTT) = p3q + q3p = pq(p2 + q2) = P (S = 3)

(iii) We need to compute P (S = 2n) and P (A = 2n). If S = 2n, then we rolled heads 2n times and then tails,
or we rolled tails 2n times and then heads.

P (S = 2n) = P
(
H2nT

)
+ P

(
T2nH

)
= p2nq + q2np = pq(p2n−1 + q2n−1)

If A = 2n, then we rolled heads and tails n times each, followed by either heads or tails (depending on
which way the first coin landed).

P (A = 2n) = P (HnTnH) + P (HnTnT) = pnqnp+ pnqnq = pnqn(p+ q)

To work out which is larger, we can subtract one from the other and consider the sign of the result.

P (S = 2n)− P (A = 2n) = pq(p2n−1 + q2n−1)− pnqn(p+ q)

= pq
(
p2n−1 + q2n−1 − pn−1qn−1(p+ q)

)
= pq

(
p2n−1 − pnqn−1 + q2n−1 − pn−1qn

)
= pq

(
pn−1 − qn−1

)︸ ︷︷ ︸
α

(pn − qn)︸ ︷︷ ︸
β

If p > q, then α > 0 and β > 0. If p < q, then α < 0 and β < 0. Either way, P (S = 2n)− P (A = 2n) is
positive, as required. Now, if S = 2n+ 1:

P (S = 2n+ 1) = P
(
H2n+1T

)
+ P

(
T2n+1H

)
= p2n+1q + q2n+1p = pq(p2n + q2n)

If A = 2n+ 1, then we rolled n+ 1 heads, n tails, and a final head; or n+ 1 tails, n heads, and a final tail.

P (A = 2n+ 1) = P
(
HnTnH2

)
+ P

(
HnTnT2

)
= pnqnp2 + pnqnq2 = pnqn(p2 + q2)

Again, we will compute P (S = 2n+ 1)− P (A = 2n+ 1).

P (S = 2n+ 1)− P (A = 2n+ 1) = pq(p2n + q2n)− pnqn(p2 + q2)

= pq
(
p2n + q2n − pn−1qn−1(p2 + q2)

)
= pq

(
p2n − pn+1qn−1 + q2n − pn−1qn+1

)
= pq

(
pn−1 − qn−1

)︸ ︷︷ ︸
α

(
pn+1 − qn+1

)︸ ︷︷ ︸
β

If p > q, then α > 0 and β > 0. If p < q, then α < 0 and β < 0. Either way, P (S = 2n+ 1)−P (A = 2n+ 1)
is positive. Hence P (S = 2n+ 1) > P (A = 2n+ 1).
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